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Abstract—Accurate, on-board classification of instrument

data is used to increase science return by autonomously

identifying regions of interest for priority transmission or

generating summary products to conserve transmission

bandwidth. Due to on-board processing constraints, such
classification has been limited to using the simplest

functions on a small subset of the full instrument data.

FPGA co-processor designs for SVM1 classifiers will lead

to significant improvement in on-board classification

capability and accuracy.

We implemented a SWIL2 classifier, developed for the

Hyperion instrument on the EO-1 spacecraft, on the Xilinx
Virtex-4FX60 FPGA as a baseline challenge. We have taken

advantage of Impulse CTM, the commercially available C-to-

HDL tool by Impulse Accelerated Technologies, which

supports the development of highly parallel, co-designed

hardware algorithms (from software) and applications. This

paper describes our approach for implementing the

Hyperion linear SVM on the Virtex-4FX FPGA, as well as

additional experiments with increased numbers of data

bands and a more sophisticated SVM kernel to show the

potential for better on-board classification achieved with

embedded FPGAs over current in-flight capabilities.3,4

                                                  

1 SVM = Support Vector Machine
2 SWIL = Sea, Water, Ice & Land
3 1-4244-1488-1/08/$25.00 ©2008 IEEE
4 IEEEAC paper#1230, Version 1, Updated 2007:12:13
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1 INTRODUCTION

1.1 Smart Payload Motivation

On board computation has become a bottleneck for

advanced science instrument and engineering capabilities.

Currently available spacecraft processors have high power

consumption, are expensive, require additional interface

boards, and are limited in their computational capabilities.

Recently developed hybrid field-programmable gate arrays

(FPGAs), such as the Xilinx Virtex-4FX [1], offer the
versatility of running diverse software applications on

embedded processors while at the same time taking

advantage of reconfigurable hardware resources all on the

same chip package. These t ightly coupled

hardware/software co-designed systems are lower power

and lower cost than general-purpose single-board computers

(SBCs) [2], and promise breakthrough performance over

radiation-hardened SBCs, leading to a new architecture for

Smart Payload development (Table I).
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Computational Platform Performance

(DMIPS)

RAD750 SBC 240

Xilinx Virtex-II Pro 450

Xilinx Virtex-4 680

TABLE I.  PERFORMANCE: SBC VS. EMBEDDED FPGAS

Designs based on embedded FPGA processors also benefit

from the following advantages over SBCs:

• Higher level of reuse

• Reduced risk of obsolescence
• Simplified modification and update

• Increased implementation options through

modularization

We have selected the Xilinx ML410 evaluation platform

(Figure 1) for development and demonstration of selected

Smart Payload concepts including the SVM implementation

on the Virtex-4FX FPGA.

Figure 1. A good candidate for the development of a future

instrument computer for space. The Xilinx ML410

evaluation board comes with the V4FX60 FPGA that
features two embedded PowerPC405 processors [3].

1.2 SVMs for Hyperspectral Classification

Support Vector Machines [4] have found broad application
in general machine learning and classification tasks as well

as onboard remote sensing [5].  A SVM is a maximum

margin classifier that finds a separating hyperplane between

two labeled classes such that the distance to the nearest

datum in each class is maximized (Figure 2).  By selecting

such a maximum margin hyperplane, the SVM classifier can

exhibit better generalization to new data than other linear

classification methods.

The goal of training a support vector machine is to learn a

set of weights such that the sign of a weighted sum of dot

products between the training data, xi, and a test vector, t,

will correctly predict the class of the new data vector.

y = sgn wi xi,t
i
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SVMs also incorporate the kernel trick [6], which allows

them to be extended from purely linear to non-linear

classifiers.  This trick is accomplished by formulating the

training and testing algorithms in terms of dot products,

<x,y>, and then replacing the dot products with a kernel

function, K(x,y) = <_(x),_(y)>, that represents a dot product
after passing the arguments through some non-linear

function, _. By cleverly constructing the kernel function, the
high-dimensional dot product can be computed efficiently.

Figure 2: Maximum margin separating hyperplane between

two data classes.  The circled data points are the support

vectors that lie on the margin.

SVMs are well suited to onboard autonomy applications.

They represent a state-of-the-practice method in machine

learning and have a history of reasonable performance

across many domains.  The property that makes SVMs

particularly applicable is the asymmetry of computational
effort in the training and testing stages of the algorithm.

Classifying new data points requires orders of magnitude

less computation than training because the process of

training a SVM requires solving a quadratic optimization

problem.  This naively requires on the order of O(n3)
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operations, where n is the number of training examples.

Faster algorithms that exploit the specific structure of the

SVM optimization problem have been developed [7], but

the training remains the primary computational bottleneck.

After a SVM is trained, many of the weights, wi, will be

equal to zero.  This means that these terms can be ignored in

the classification formula.  The input vectors that have a

corresponding non-zero weight are called support vectors.

Even more computational savings can be realized in the case

of using a linear kernel function.  The weighted sum over

the kernel function is associative, so all the support vectors

can be collapsed into a single vector with a single weight.

Reducing the number of support vectors is key to

successfully deploying a SVM classifier onboard a

spacecraft where there are severe constraints on the amount

of CPU resources available.  Previously deployed classifiers

[5] have used such reduced-set methods, but were still

constrained to operate on only a subset of the available

classification features.  Removing such bottlenecks is

critical to realizing the full potential of SVMs as an onboard

autonomy tool.

2 SVM DEVELOPMENT FOR V4FX FPGA

JPL has developed SVM classification algorithms that can

be used onboard spacecraft to identify high priority data for

downlink to Earth and to provide onboard data analysis to
enable rapid reaction to dynamic events. To meet NASA’s

science objectives these classifiers detect flooding, volcanic

eruptions and sea ice break-up. Current pixel-based machine

learning and instrument autonomy algorithms that have

successfully detected and identified various natural

phenomena are flying on computational technologies such

as the RAD6000 and Mongoose V processors that have

limited computing power, extremely limited active storage

capabilities and are no longer considered state-of-the-art. To

date, such on-board classification has been limited to using

the simplest function, a linear kernel, on only a subset of the

full instrument data (11 of 242 bands for Hyperion on EO-
1).

We have implemented, on the Virtex-4FX60, a linear SVM

classification algorithm. This migration to a low power,

high-speed FPGA computing platform adds flexibility and

scalability to the system.  For the FPGA-based development

of the SVM, the previously software-only legacy algorithm

is implemented in the FPGA hardware fabric to take
advantage of high-speed parallel processing capabilities

while the image file input and classification file output is

managed within the embedded PowerPC processor.  Figure

3 illustrates the partitioned system.

Figure 3.  FPGA Co-design for the SVM Algorithm

The Producer is coded in a file called sw.c.  It reads an input

image file containing 857,856 pixels and streams data to the

SVM.  The Consumer, also coded in sw.c, streams data

from the SVM and writes pixel classifications (e.g., snow,

water, ice, land, cloud, or unclassified) to an output file.

The original legacy SVM code is put in a file called hw.c.

The SVM algorithm in hw.c was transformed from C-to-

HDL using the Impulse C tool set by Impulse [8] and
simulated to validate execution of the co-designed system.

The sw.c program will execute on the V4FX embedded

PowerPC processor and communicate with the hardware-

accelerated algorithm in the FPGA fabric.

Next the converted HDL code was synthesized for the

Virtex-4FX FPGA using the Xilinx ISE & EDK

development environment. Synthesis determined the V4FX

resource output for the SVM algorithm to be:

• 1 Adders/Subtractors (6 bit)

• 3 Adder/Subtractor (32 bit)

• 1 Multipliers (32 bit)

• 5 Comparators (32 bit)

• 2 Floating Point Adders/Subtractors (32 bit)

• 1 Floating Point Multipliers (32 bit)

This translates to the following resource utilization for the
V4FX60 device on the ML410 development platform (Table

II).

Original/legacy main loop:

Producer ConsumerSVM

Input

Image File Output File
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TABLE II.  IMPULSE C  RESOURCE REPORT FOR SVM.

The results of the simulation effort were presented at the

2007 NASA Space Technology Conference [9] as a

preliminary report of this on-going task.

2.1 Validation

The output of the Producer-SVM-Consumer path is a file

composed of a column of integers indicating the resulting
class of each pixel in the image. This output file is then

reformatted in MatlabTM to the original pixel-wise

dimensions of the image. Additionally, each class is

assigned an arbitrary color and the number of pixels

belonging to each class is tabulated. We can then easily

calculate the percentage of pixels belonging to each class

and visualize the resulting file of classified pixels.

Validation was required in two facets of this project. It was
necessary to validate both the pixel classification results

from the SVM and the Impulse C implementation of the

SVM. We began the classification process by comparing the

pixel classification percentage results to those achieved on

the SVM used in the ASE on the Earth Observing-1

Satellite. The classification percentages show good

agreement, particularly for the snow and water classes

(Table III).

It is possible, however, for the raw percentage results to

look reasonable, while the pixel classification visualization

shows no resemblance to the physical features in the image.

The visualizations were integral in our validation efforts.

Our resulting visualizations show excellent agreement with

the results from the ASE SVM (Figure 4). In addition to the

qualitative comparison of the images, we also conducted a

pixel-by-pixel comparison of the ASE results and our

classifications. This comparison was made less accurate due

to our lack of a raw classification data file for the ASE

image. The pixel-by-pixel classification comparison showed
that 76.8% of the pixel classifications in our results matched

those of the ASE results (Figure 5 & Table III). We believe

the discrepancies to be due to the differences in the training

datasets of the SVMs.

In order to dismiss the possibility of errors being introduced

by the Impulse C implementation of the SVM, we also

wrote a conceptually identical version of the code in C and
compared the resulting output to that achieved by the

Impulse C implementation. The two implementations

produce identical classifications on a pixel-by-pixel basis.

The combination of the good agreement of our results with

the ASE results as well as the independence of the results

from the software platform leads us to believe that our

implementation is valid.

The color key is blue = water, cyan = ice, dark purple =

snow, lavender = unclassified.

Figure 4. A comparison of the results from a) the Impulse C

SVM implementation, b) the ASE SVM, and c) the original

hyperspectral image.
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TABLE III. A COMPARISON OF THE PERCENTAGES OF PIXELS

CLASSIFIED IN EACH CLASS BETWEEN THE ASE SVM AND

OUR IMPULSE C SVM IMPLEMENTATION. THE AGREEMENT

PERCENTAGES INDICATE THE PERCENT OF THE PIXELS

CLASSIFIED IN EACH CLASS BY THE IMPULSE C SVM THAT

WERE ASSIGNED TO THE SAME CLASS BY THE ASE SVM.

Figure 5. The black pixels in image (b) indicate the indices

where the classifications of pixels (a) and (c) were not

identical.

2.2 Implementation

In order to implement the SVM on the ML410 board, a

minor modification to the producer/consumer model was

required.  The model requires the producer and consumer

modules run concurrently, so the producer-hardware-

consumer data flow necessitates a multi-threaded processing

environment. This design allowed for simultaneous

bidirectional communication between software and

hardware, which permitted us to use small-depth buffers

between hardware and software.  In lieu of running a multi-

threaded operating system on the PPC, we combined the

producer and consumer functions into a single function that

alternated hardware read and write operations.  The
communication between the software module and the

hardware core was then implemented as two separate

buffers (see Figure 6).

Figure 6. Hardware (HW)/Software (SW) Modules.

After this small algorithmic change, we used Impulse C to

generate the hardware module.  Following a few trivial

changes to the software (an endian-swap, using optimized

“printf” functions, etc.), the design was ready to be put onto

the ML410 board.  For this project we used the following

board resources: a single PowerPC-405 (PPC) processor

running at 100MHz, a Processor Local Bus (PLB), a

256MB DDR2 DIMM, a System ACE Compact Flash

interface, an On-Chip Peripheral Bus (OPB), a PLB-to-OPB
bridge, and a UART (see Figure 7).  In addition, the

hardware portion of the project was instantiated in the

FPGA fabric.

Figure 7. FPGA Hierarchy
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The PPC ran the software portion of the task, which sends

data to and collects data from the SVM hardware module.

We chose to use the PPC instead of a Microblaze processor

because the PPC can operate at triple the clock frequency of

the Microblaze, and the Microblaze would be instantiated in

valuable FPGA fabric, whereas the PPC exists external to
the fabric.  Since the 256MB DIMM is the largest source of

memory on the board, we used it as main memory for the

program.  The PLB is a high-speed bus (compared to the

OPB) that allows for fast data transfer to/from the memory

and SVM core peripherals.  The 16GB Compact Flash card

was used to hold the input and output data files, which are

too large to fit on the DIMM.  The UART was used to for

debugging output.  The OPB is a low-speed bus that is the

default interface between the processor and the System Ace

controller and UART peripherals.  We synthesized the

design and ran it on the ML410 board.  The classification

output is shown in Figure 8a.

2.3 Extensions

Having successfully implemented the legacy SVM designed

for Hyperion, we considered two extensions to the

algorithm: using a larger number of bands with the same

linear kernel SVM, and creating a new SVM with a

nonlinear kernel. For the expanded linear kernel SVM, we

arbitrarily selected 30 of the available 242 bands in the

image. For the nonlinear kernel SVM, we used the same 11

bands as the legacy SVM with the kernel K(x,y)=(<x,y> +

1)
2, where <x,y> is the dot product of ‘x’ and ‘y’. Because

training data was not available for the original legacy SVM,

we could not generate new SVMs that would be comparable

to it, so we used new training data to generate the two new

SVMs then also generated a new 11-band linear-kernel

SVM for comparison to the legacy SVM. See Table IV for

FPGA fabric utilization percentages for each of these

SVMs.  Table V shows a runtime comparison of each SVM

in a software-only implementation (PPC+FPU) and in the

Impulse C co-designed implementation (PPC + HW).

TABLE IV. PERCENT FABRIC UTILIZATION FOR SVMS

TABLE V.  SVM RUN-TIME COMPARISON (IN MIN: SEC)

Figure 8. A comparison of the results from a) the 11-band

linear SVM hardware implementation, b) the 30-band linear

SVM hardware implementation, c) the polynomial SVM

hardware implementation, to d) the original hyperspectral

image.  Color differences between image b) and the other 2

images (a & c) are due to the different bands (qty. 11 vs. 30)

selected for each classification.
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The hardware implementation of these SVMs produced

results that agree very well with the software simulations of

the algorithms. Figure 8b shows the 30-band linear SVM

classification output.  Figure 8c shows the polynomial SVM

classification output. See Table VI for a summary of

classification disagreement for each of the three SVMs.
These disagreements may be due to floating-point hardware

implementation differences between the FPGA hardware

and the processor that ran the software simulations.

TABLE VI. CLASSIFICATION DISAGREEMENT PERCENTAGE

BEWTEEN SOFTWARE SIMULATION & PHYSICAL

IMPLEMENTATION

3 SEU MITIGATION

Space-flight qualified FPGAs are susceptible to radiation

single event upsets (SEUs), therefore this issue must be

addressed for the SVM V4FX design to be flight-ready. The

expected SEU rates of Rad-Hard flight processors, such as

the RAD750, in a GEO environment is on the order of 1
error every 5-10 years. Expected SEU rates for the Xilinx

Virtex FPGA are approximately one error per week. Recent

data from similar FPGAs flown on JPL’s Mars Exploration

Rovers validate these predictions [10]. (It should be noted

that next generation Xilinx parts such as the Virtex-4 are

expected to be produced on CMOS SOI process lines,

providing an order of magnitude improvement in SEU rate

as well as other speed/power and radiation tolerance

improvements). In order to achieve parity with Rad-Hard

processors, we must reduce the SEU error rates by

approximately two orders of magnitude and do this in a way
that is relatively transparent to the application.  Future work

toward this goal could use the Xilinx Triple Modular

Redundancy (TMR) Tool [11] to triplicate logic as there are

sufficient remaining resources, as well as run the dual-core

processors in lock-step. The simplest approach may be to

include only SEU detection in the design and when

detection occurs re-load the FPGA configuration file. This is

a viable strategy for non-critical applications that can

withstand occasional interruption for re-configuration.

Partial reconfiguration is another possible solution, albeit

more complex to implement, where only the effected
portion of the FPGA needs to be configured.

4 CONCLUSION

FPGAs with embedded processing capabilities are

demonstrating breakthrough performance previously

impossible with traditional processors. This paper presented

results from the synthesis of a legacy software SVM

classification algorithm to the Xilinx V4FX60 FPGA

platform as well as two extensions to demonstrate the
increased capabilities of this implementation.  Using

commercially available C-to-HDL translation tools, this

work was made possible under very limited funding.

Hardware acceleration, of legacy software algorithms such

as the described SVMs, promises to provide needed

capability for more advanced on-board data processing in

future science missions.

While the current method is to implement only those
software classification algorithms that will fit within very

constrained on-board processing resources, with embedded

FPGAs such as the V4FX60, increasingly advanced SVMs

may be implemented with “room to grow” in on-board

resources.  Our results demonstrate that our most advanced

extension, the (2,1) polynomial kernel, is achieved with only

9% utilization of the FPGAs DSPs.  Imagine the

possibilities!
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